Protein backbone motions viewed by intraresidue and sequential HN-Halpha residual dipolar couplings.
نویسندگان
چکیده
Triple resonance E.COSY-based techniques were used to measure intra-residue and sequential H(N)-H(alpha) residual dipolar couplings (RDCs) for the third IgG-binding domain of protein G (GB3), aligned in Pf1 medium. Measurements closely correlate with values predicted on the basis of an NMR structure, previously determined on the basis of a large number of one-bond backbone RDCs measured in five alignment media. However, in particular the sequential H(N)-H(alpha) RDCs are smaller than predicted for a static structure, suggesting a degree of motion for these internuclear vectors that exceeds that of the backbone amide N-H vectors. Of all experimentally determined GB3 structures available, the best correlation between experimental (1)H-(1)H couplings is observed for a GB3 ensemble, previously derived to generate a realistic picture of the conformational space sampled by GB3 (Clore and Schwieters, J Mol Biol 355:879-886, 2006). However, for both NMR and X-ray-derived structures the (1)H-(1)H couplings are found to be systematically smaller than expected on the basis of alignment tensors derived from (15)N-(1)H amide RDCs, assuming librationally corrected N-H bond lengths of 1.041 A.
منابع مشابه
Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements.
Backbone residual dipolar coupling (N-H, Calpha-Halpha, N-C', and Calpha-C') data collected in five different media on the B3 IgG binding domain of streptococcal protein G (GB3) have been analyzed by simultaneous refinement of the coordinates and optimization of the magnitudes and orientations of the alignment tensors using single and multiple structure representations. We show, using appropria...
متن کاملThe high-precision solution structure of Yersinia modulating protein YmoA provides insight into interaction with H-NS.
The high-resolution solution structure of Yersinia modulating protein YmoA is presented. The protein is all helical with the first three of four helices forming the central core. Structures calculated with only NOE and dihedral restraints exhibit a backbone root-mean-square deviation (rmsd) of 0.77 A. Upon refinement against Halpha-Calpha, HN-N, and Calpha-C' J-modulated residual dipolar coupli...
متن کاملLimits on variations in protein backbone dynamics from precise measurements of scalar couplings.
3JHN,Halpha, 3JHN,Cbeta, and 3JHN,C' couplings, all related to the backbone torsion angle phi, were measured for the third immunoglobulin binding domain of protein G, or GB3. Measurements were carried out using both previously published methods and novel sequences based on the multiple-quantum principle, which limit attenuation of experimental couplings caused by finite lifetimes of the spin st...
متن کاملConcordance of Residual Dipolar Couplings, Backbone Order Parameters and Crystallographic B-factors for a Small a/b Protein: A Unified Picture of High Probability, Fast Atomic Motions in Proteins
0022-2836/$ see front matter Published Abbreviations used: RDC, residu NOE, nuclear Overhauser effect; GB domain of streptococcal protein G. E-mail addresses of the correspon [email protected]; charl nih.gov Using ensemble refinement of the third immunoglobulin binding domain (GB3) of streptococcal protein G (a small a/b protein of 56 residues), we demonstrate that backbone (N–H, N–C ...
متن کاملStructural characterization of unfolded states of apomyoglobin using residual dipolar couplings.
The conformational propensities of unfolded states of apomyoglobin have been investigated by measurement of residual dipolar couplings between (15)N and (1)H in backbone amide groups. Weak alignment of apomyoglobin in acid and urea-unfolded states was induced with both stretched and compressed polyacrylamide gels. In 8 M urea solution at pH 2.3, conditions under which apomyoglobin contains no d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomolecular NMR
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2008